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 Purpose: To determine whether automated temporoparietal brain 
volumes can be used to accurately predict future memory 
decline among a multicenter cohort of cognitively healthy 
elderly individuals.

 Materials and 
Methods: 

The study was approved by the institutional review board at 
each site and was HIPAA compliant, with written consent 
obtained from all participants. One hundred forty-nine 
cognitively healthy study participants were recruited through 
the Alzheimer’s Disease Neuroimaging Initiative and un-
derwent a standardized baseline 1.5-T magnetic resonance 
(MR) imaging examination, as well as neuropsychological 
assessment at baseline and after 2 years of follow-up. A 
composite memory score for the 2-year change in the re-
sults of two delayed-recall tests was calculated, and mem-
ory decline was defi ned as a composite score that was at 
least 1 standard deviation below the group mean score. 
The predictive accuracy of the brain volumes was estimated 
by using areas under receiver operating characteristic 
curves and was further assessed by using leave-one-out 
cross validation.

 Results: Use of the most accurate region model, which included 
the hippocampus; parahippocampal gyrus; amygdala; su-
perior, middle, and inferior temporal gyri; superior parie-
tal lobe; and posterior cingulate gyrus, resulted in a fi tted 
accuracy of 94% and a cross-validated accuracy of 81%.

 Conclusion: Study results indicate that automated temporal and pa-
rietal volumes can be used to identify with high accuracy 
cognitively healthy individuals who are at risk for future 
memory decline. Further validation of this predictive 
model in a new cohort is required.

 q  RSNA, 2011
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Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) ( 11 ). The ADNI was funded 
as a prospective longitudinal study to 
identify biomarkers of early AD for tri-
als and was supported by the National 
Institute on Aging, the National Institute 
of Biomedical Imaging and Bioengineer-
ing, the Food and Drug Administration, 
pharmaceutical companies, and non-
profi t organizations. Written consent was 
obtained from all subjects, and the 
study was approved   by the institutional 
review board of each participating cen-
ter. This study was also compliant with 
Health Insurance Portability and Ac-
countability Act guidelines. 

 Participants were older than 55 
years, lacked clinical or structural evi-
dence of neurologic or psychiatric dis-
ease, had no memory complaints, had 
preserved activities of daily living, and 
scored within the normal range on the 
Mini-Mental Status Examination ( 12 ), 
clinical dementia rating scale ( 13 ), and 
revised Wechsler memory scale ( 14 ). 
Further details regarding the inclusion 
and exclusion criteria can be found at 
 http://www.adni-info.org/.  

cognitively healthy individuals who are 
at risk is an important next step. 

 An association between brain vol-
umes and longitudinal cognitive decline 
in a cohort consisting solely of cognitively 
healthy individuals has been reported in 
three studies ( 7–9 ). All of these studies, 
however, involved analyses focused on the 
medial temporal lobe and the use of semi-
automated or manual delineation of vol-
umes, which may lack interrater repro-
ducibility and practicality for use in clinical 
practice or a clinical trial. Furthermore, 
the diagnostic accuracy of the approach 
used to predict future cognitive decline, 
which was not cross validated, was re-
ported in only one of these studies ( 8 ). 

 The purpose of our exploratory 
study was to determine whether auto-
mated temporoparietal brain volumes 
can facilitate accurate prediction of 
future memory decline among a multi-
center cohort of cognitively healthy el-
derly individuals with no baseline clini-
cal evidence of cognitive impairment. 
We hypothesized that medial temporal 
lobe volumes, which are known to be 
affected earliest in the disease course 
( 10 ), would be the most predictive of 
memory decline in cognitively healthy 
individuals. We further predicted that 
parietal lobe volumes, which are also 
included in the memory network and 
are affected in individuals with AD, 
would also contribute to the model by 
complementing the predictions based on 
temporal lobe volumes alone. 

 Materials and Methods 

 Subjects 
 One hundred forty-nine participants 
were recruited from 56 centers in the 
United States and Canada ( Table 1  ) 
between 2005 and 2008 through the 

             Twenty-four million people world-
wide are currently affl icted with 
dementia, and this number is pro-

jected to double every 20 years ( 1 ). Alz-
heimer disease (AD) is the cause of the 
majority of these cases. A diagnosis of 
AD is attained through detailed neuro-
psychological assessment and radiologic 
exclusion of structural abnormalities. 
Thus far, no known treatment that sub-
stantially alters the course of AD has 
been identifi ed, perhaps because irre-
versible neurodegeneration has already 
occurred before the diagnosis. As a re-
sult, there is growing interest in identi-
fying individuals who are at risk for AD 
at an early stage, when memory preser-
vation still may be possible. 

 Investigators in recent studies have 
reported that the brain volumes derived 
from magnetic resonance (MR) images, 
particularly those obtained in the tem-
poral and parietal lobes, enable accu-
rate differentiation between individuals 
with mild cognitive impairment (MCI) 
and probable AD and those who are 
cognitively healthy ( 2,3 ). In addition, 
brain volumes and cortical thicknesses 
have been shown to be predictive of 
which individuals with MCI will eventu-
ally develop AD ( 4,5 ). However, individ-
uals with clinical evidence of memory 
impairment may already be at a rela-
tively advanced stage of disease. The 
preventative therapies currently being 
evaluated in clinical trials may be more 
effi cacious in a population without any 
evidence of memory impairment, in 
which substantial neuronal loss has not 
yet occurred ( 6 ). As a result, identifying 

 Implication for Patient Care 

 MR imaging–derived brain vol- n

umes may enable the identifi ca-
tion of cognitively healthy indi-
viduals who are at risk for future 
memory decline, for clinical trials 
and potential preventative 
therapies. 

 Advances in Knowledge 

 Elderly individuals may exhibit  n

brain volume differences that are 
suggestive of future memory 
decline, even before there is clin-
ical evidence of memory 
impairment. 

 Regional brain volumes in the  n

memory network enable with 
high accuracy the differentiation 
between cognitively healthy indi-
viduals with and those without 
risk of subsequent memory 
decline. 
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were averaged to derive a composite 
memory score for each subject. We 
were interested in clinically important 
memory decline, which was defi ned as 
at least 1 standard deviation below the 
mean memory score. This resulted in 
25 decliners and 124 nondecliners being 
in our cohort ( Table 1 ). The composite 
memory score was regressed against 
age and education, and no association 
was found. As such, these demographic 
variables were not included in the mod-
els. There was a higher proportion of 
women in the decliner group. However, 
including this demographic variable in 
the models did not improve the predic-
tive accuracy. 

 Selection of Brain Regions 
 Based on a priori knowledge that AD 
affects primarily the temporal and pari-
etal lobes, with sparing of the sensori-
motor and frontal lobes until late in the 
disease ( 2–5,10,21,22 ), the following 
15 regions were selected as candidates 
for possible inclusion in the model: en-
torhinal cortex, hippocampus, parahip-
pocampal gyrus, amygdala, superior 
temporal gyrus, middle temporal gyrus, 
inferior temporal gyrus, fusiform gyrus, 
banks of the superior temporal sulcus, 
temporal pole, posterior cingulate gyrus, 
isthmus cingulate, superior parietal lobe, 
inferior parietal lobe, and precuneus 
( Fig 1 ). In these analyses, the bilateral re-
gions were averaged to restrict the num-
ber of variables included in the model. 

 These regions were adjusted for 
intracranial volume by using the cova-
riance method ( 23 ) with the equation 
 V  a    =  V  ua   2   G  ·  ( V  sic   2   V  mic ), where  V  a  is 
the adjusted volume,  V  ua  is the unad-
justed volume,  G  is the gradient,  V  sic  
is the subject intracranial volume, and 
 V  mic  is the mean intracranial volume for 
all control subjects. The variable gradi-
ent was derived by regressing the unad-
justed volumes against the intracranial 
volumes across all subjects. Intracranial 
volumes were obtained from a previously 
validated approach by using the atlas scal-
ing factor in the Freesurfer program ( 24 ). 

 Statistical Analyses 
 An iterative program in R, version 2.9.2 
 (http://www.r-project.org/),  software 

label to each voxel by using a Bayesian 
classifi cation rule ( Fig 1  ). The resulting 
segmentation maps were visually rated 
for accuracy by two authors (D. Truran-
Sacrey, S.R., 15 and 5 years of experi-
ence, respectively) on the basis of their 
neuroanatomic knowledge. To avoid 
manual editing of the data, which could 
have introduced bias into the analyses, 
subjects were excluded from the analy-
sis if the segmentation failed in this 
quality control step. 

 Defi nition of Memory Decline 
 The earliest clinical manifestation of AD 
is a defi cit in delayed verbal memory 
( 18 ). Because impaired delayed verbal 
memory is also predictive of the time 
to progression from normal cognitive 
function to MCI ( 19 ), it was selected 
as the outcome of interest. We used two 
memory scores: the subscore of the Rey 
Auditory Verbal Learning Test-Delayed 
Recall (AVLT-D) ( 20 ) and the delayed 
paragraph recall subscore of the Log-
ical Memory II subscale (ie, revised 
Wechsler memory scale) test ( 14 ). For 
the AVLT-D, subjects are given a list of 
15 unrelated words and asked to repeat 
the list after 30 minutes. For the revised 
Wechsler memory scale test, subjects 
are told a story and asked to repeat the 
story after 30 minutes. A  z  score for 
each subject’s 2-year change in perfor-
mance on each test was calculated by 
subtracting the subject’s change score 
from the cohort mean score and divid-
ing this difference by the standard de-
viation. The two  z  scores for each test 

 MR Image Acquisition and Volume 
Estimation 
 The participants underwent the follow-
ing standardized 1.5-T MR imaging pro-
tocol  (http://www.loni.ucla.edu/ADNI
/Research/Cores/index.shtml):  two T1-
weighted MR imaging examinations with 
use of a sagittal volumetric magnetization-
prepared rapid gradient-echo (MP-
RAGE) sequence, with 9/4 (repetition 
time msec/echo time msec), a fl ip angle 
of 8°, and an acquisition matrix size of 
256  3  256  3  166 in the x, y, and z 
dimensions, with a nominal voxel size 
of 0.94  3  0.94  3  1.2 mm. Investiga-
tors   at a designated center selected the 
MP-RAGE images of higher quality for 
regional volume estimation ( 15 ). 

 The raw Digital Imaging and Com-
munications in Medicine MR imag-
ing data were downloaded from the 
Laboratory of Neuro Imaging Database 
archives  (http://www.loni.ucla.edu
/ADNI/Data/index.shtml).  The MR im-
ages were automatically corrected for 
spatial distortion due to gradient non-
linearity and B 1  fi eld inhomogeneity. 
Cortical reconstruction and volumet-
ric segmentation were performed by 
using the   Freesurfer image analysis 
suite, version 4.3 (Athinoula A. Martinos 
Center for Biomedical Imaging, Boston, 
Mass,  http://surfer.nmr.mgh.harvard.edu/)  
( 16,17 ). Briefl y, this software performs 
motion correction, skull stripping, and 
signal intensity normalization. A proba-
bilistic atlas derived from a training set 
of 40 adult non-ADNI participants is 
then used to assign a neuroanatomic 

 Table 1 

 Baseline Characteristics 

Characteristic Nondecliners ( n  = 124) * Decliners ( n  = 25) *  P  Value

Age (y) 75.1  6  5.0 76.6  6  4.2 .14
M/F patients  †  74/50 8/17 .02  ‡  
No. of years of education 16.1  6  2.7 16.3  6  2.7 .80
AVLT-D subscore  §  7.5  6  3.7 8.8  6  4.0 .06
Delayed paragraph recall test 
 subscore

12.9  6  3.2 13.6  6  3.5 .35

* Unless otherwise noted, data are mean values  6  standard deviations.

 †  Data are numbers of patients.

 ‡  Difference between nondecliners and decliners was signifi cant.

 §  AVLT-D = Rey Auditory Verbal Learning Test, delayed recall.
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accuracy was further assessed by means 
of leave-one-out cross validation ( 25 ). 
With use of this method, all subjects 
except one are used as the training set 
for the model and the prediction error 
is assessed for the excluded subject (ie, 
the test set). This accuracy determina-
tion is performed with each subject in 
the cohort to estimate the overall cross-
validated accuracy of the model. Ninety-
fi ve percent confi dence intervals for the 
cross-validated accuracy estimates were 
obtained with 1000 bootstrap samples 
( 25 ). With this method, model accuracy 
was assessed in subject samples drawn 
from the original cohort of subjects. This 
procedure was performed 1000 times 

search was restricted to the number 
of brain regions and pairwise interac-
tions that were supportable by the data, 
which was not to exceed a total of 20 
terms, to maintain a full rank correla-
tion matrix, given the number of sub-
jects. The R program reported the 25 
most accurate models for each number 
of brain regions included. The pairwise 
interactions with the highest frequency 
in these 25 models were included in 
subsequent models that included more 
brain regions. Accuracy was determined 
according to the area under the re-
ceiver operating characteristic curve to 
illustrate the continuum of possible sen-
sitivities and specifi cities ( 26 ). Model 

for statistical computing, which was 
coded by a statistician (P.S.I.), was 
used to derive the models that would 
enable the most accurate prediction 
of memory decline. On the basis of a 
best-subsets procedure, models that in-
cluded all combinations of between two 
and nine brain regions were considered 
and compared in terms of predictive ac-
curacy ( 25 ). In addition, pairwise inter-
actions were included in the models to 
determine whether having smaller vol-
umes in two temporoparietal regions si-
multaneously would yield an even more 
accurate prediction of memory decline 
than would the additive effect of us-
ing the two regions alone. The model 

 Figure 1 

  
  Figure 1:  Automated segmentation of 15 temporal and parietal volumes of interest on  (a)  axial,  (b)  coronal, and  (c)  sagittal 
MR images, performed by Freesurfer software.   
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to provide a confi dence interval for the 
accuracy of each model. 

 Results 

 The baseline characteristics are sum-
marized in  Table 1 . The decliner and 
nondecliner groups did not differ sig-
nifi cantly in terms of age or years of 
education. The decliner group scored 
marginally higher on the baseline AVLT-D 
and had proportionately more women, 
although including sex in the models 
did not improve the predictive accu-
racy. Baseline volumetric differences in 
the 15 candidate regions are shown in 
 Table 2  . 

 As the number of brain regions 
included in the model increased, the 
predictive accuracy of the classifi cation 
model also increased ( Table 3  ,  Fig 2  ). 
Furthermore, the progression of re-
gions that were selected for inclu-
sion in the model was similar   to the 
progression of the pathologic stage of 
AD ( 2,21 ). For example, the fi rst two 
regions selected were the hippocam-
pus and the parahippocampal gyrus. 
Models including three to six regions 
consisted predominantly of temporal 
lobe regions, and the seven-, eight-, 
and nine-region models included more 
than one parietal lobe region. The fusi-
form gyrus, banks of the superior tem-
poral sulcus, temporal pole, and precu-
neus were not selected in any of the 
models. 

 The six-, seven-, eight-, and nine-
region models demonstrated the highest 
fi tted accuracy, 91%–94%, with cross-
validated accuracies of 77%–81%. We 
determined that the most accurate 
model was the eight-region model, 
which included the hippocampus; para-
hippocampal gyrus; amygdala; superi-
or, middle, and inferior temporal gyri; 
superior parietal lobe; and posterior 
cingulate gyrus. Pairwise interaction 
terms contributed signifi cantly to the 
model: The eight-region model without 
interactions had a cross-validated ac-
curacy of 58% (95% confi dence in-
terval: 49%, 81%) compared with a 
cross-validated accuracy of 81% with 
interactions (95% confi dence interval: 
77%, 91%). 

 Table 2 

 Baseline Volumes in 15 Candidate Temporoparietal Regions 

Brain Region Nondecliner Group * Decliner Group *  P  Value

Entorhinal cortex 3994  6  582 3782  6  734 .18
Hippocampus 6811  6  742 6329  6  748 .006  †  
Parahippocampal gyrus 4033  6  498 4030  6  533 .95
Amygdala 2242  6  290 2126  6  344 .23
Superior temporal gyrus 19 820  6  1795 18 856  6  2506 .04  †  
Middle temporal gyrus 20 086  6  1916 19 487  6  1988 .18
Inferior temporal gyrus 20 171  6  0.87 20 358  6  2705 .87
Fusiform gyrus 17 585  6  1770 16 818  6  1980 .09
Banks of superior temporal sulcus 4530  6  586 4313  6  583 .08
Temporal pole 3864  6  528 3885  6  583 .73
Posterior cingulate gyrus 6101  6  576 6048  6  584 .95
Isthmus cingulate 4227  6  486 4064  6  457 .19
Superior parietal lobe 21 655  6  2392 21 416  6  3038 .49
Inferior parietal lobe 23 180  6  2732 22 260  6  2136 .07
Precuneus 16 048  6  1570 15 310  6  1494 .03  †  

* Data are mean baseline volumes (in cubic millimeters)  6  standard deviations.

 †  Difference between nondecliners and decliners was signifi cant.

 Table 3 

 Models Predicting Subsequent Memory Decline 

No. of Brain 
Regions in Model Brain Regions Included

Fitted Predictive 
Accuracy

Cross-validated 
Accuracy

2 Hippocampus, parahippocampal gyrus 69 63 (52, 77)
3 Hippocampus, superior temporal gyrus, posterior 

 cingulate gyrus
78 71 (62, 84)

4 Parahippocampal gyrus, superior temporal gyrus, 
 middle temporal gyrus, posterior cingulate gyrus

82 71 (65, 89)

5 Entorhinal cortex, parahippocampal gyrus, superior 
  temporal gyrus, middle temporal gyrus, superior 

parietal lobe

87 75 (69, 89)

6 Hippocampus, parahippocampal gyrus, superior 
  temporal gyrus, middle temporal gyrus, inferior 

temporal gyrus, superior parietal lobe

91 79 (72, 90)

7 Hippocampus, parahippocampal gyrus, superior 
  temporal gyrus, middle temporal gyrus, inferior 

temporal gyrus, superior parietal lobe, posterior 
cingulate gyrus

92 77 (75, 90)

8 Hippocampus, parahippocampal gyrus, superior 
  temporal gyrus, middle temporal gyrus, inferior 

temporal gyrus, superior parietal lobe, posterior 
cingulate gyrus, amygdala

94 81 (77, 91)

9 Hippocampus, parahippocampal gyrus, superior 
  temporal gyrus, middle temporal gyrus, inferior 

temporal gyrus, superior parietal lobe, posterior 
cingulate gyrus, isthmus cingulate gyrus, 
amygdala

93 79 (75, 92)

Note.—Fitted predictive and cross-validated accuracy values are percentages, with 95% confi dence intervals in parentheses.
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pairwise interaction terms account for 
simultaneous volume variations across 
separate brain regions. The results im-
ply that the effect of multiple regions 
of brain atrophy on memory is greater 
than the additive effect of each region 
alone. Therefore, given the connectiv-
ity of the brain, the fi nding that these 
interaction terms signifi cantly improved 
the predictions makes intuitive sense. 
Further work to analyze these interac-
tions is required. 

 The precuneus, fusiform gyrus, tem-
poral pole, and banks of the superior 
temporal sulcus were not selected for 
any of the models in this study, despite 
some reports that describe their vulner-
ability to AD ( 30,40,41 ). This could re-
fl ect methodologic differences, such as 
our use of a region-of-interest approach 
rather than voxel-based morphometry, 
as well as the automated rather than 
manual delineation of structures. We 
fi nd it interesting that although the pre-
cuneus had a signifi cantly smaller vol-
ume among the decliners at baseline, it 
was not included among the most pre-
dictive models. This suggests that pre-
cuneus volumes may be less useful when 
more predictive temporal lobe regions 
are already included in the model. 

consistent with our understanding of 
AD, has not been previously emphasized 
in the literature. The posterior cingulate 
gyrus has been shown in functional MR 
imaging studies to be involved in memory 
retrieval ( 32 ). The decreased glucose 
metabolism in the posterior cingulate 
gyrus observed in positron emission 
tomography studies also suggests early 
involvement of the posterior cingulate 
gyrus in AD ( 33 ). Furthermore, in two 
recent articles, investigators report that 
posterior cingulate atrophy can be seen 
early in the course of AD and corre-
lates with the degree of temporal lobe 
atrophy ( 34,35 ). In a third article, it is 
reported that even cognitively healthy 
individuals with high levels of cerebral 
amyloid demonstrate smaller posterior 
cingulate volumes ( 36 ). The superior 
parietal lobe is an early site for amyloid 
deposition and glucose hypometabolism 
( 37,38 ). Finally, numerous connections 
between the temporal association cortex 
and the hippocampus may render volu-
metric differences predictive ( 39–41 ). 

 An unexpected finding was that 
pairwise interactions signifi cantly im-
proved predictive accuracy. Prior stud-
ies have been focused on the additive 
effects of brain regions ( 2–5,7–9 ). The 

 Discussion 

 Our results demonstrate that automated 
MR-derived brain volumes facilitate 
accurate prediction of future memory 
decline in cognitively healthy elderly in-
dividuals. The regions that facilitated 
the best differentiation of cognitively 
healthy subjects included those known 
to be affected by AD reported in the 
literature. 

 Investigators in previous studies 
have used MR imaging–derived brain 
volumes to differentiate the clinical 
stages of AD. Models that differentiate 
between normal cognition and mild cog-
nitive impairment (MCI) have reported 
accuracies of 85%–95%, whereas models 
that differentiate between normal cogni-
tion and AD have reported accuracies of 
91%–100% ( 2–4 ). The more challenging 
task of differentiating among individu-
als at the same cognitive stage yields 
lower accuracies. Two previous studies 
involving the differentiation between 
individuals with MCI progressing to AD 
and those remaining cognitively stable 
yielded reported accuracies of 73%–75% 
( 4,5 ). Thus, the cross-validated accu-
racy of 81% for differentiating between 
healthy individuals with and those without 
memory decline reported in our study 
appears to be consistent with data in 
the literature. Another potential strength 
of our model relative to those in previ-
ous studies involving cognitively healthy 
individuals ( 7–9 ) is the incorporation 
of regions beyond the temporal lobe. 
This may result in increased specifi city 
because temporal lobe atrophy is also 
seen with schizophrenia, alcoholism, and 
other forms of dementia ( 27–29 ). Thus, 
our model may have more accuracy when 
it is used in a community with a broader 
range of structural abnormalities. 

 The inclusion of the hippocampus, 
parahippocampal gyrus, and amygdala 
in our most accurate model was antici-
pated. Pathology studies have shown that 
mesial-temporal lobe structures, which 
make up the limbic network, are af-
fected the earliest in the disease course 
( 10,30,31 ). To our knowledge, the con-
tribution of other temporal and parietal 
lobe volumes to the differentiation of 
cognitively healthy individuals, although 

 Figure 2 

  
  Figure 2:  Receiver operating characteristic curves for classifi cation models 
show greater accuracy with inclusion of more brain regions.   
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single baseline MR examination facili-
tate accurate identifi cation of cognitively 
healthy individuals who are at risk for 
future memory decline. The ability to 
identify high-risk cognitively healthy 
individuals may be useful in targeting 
individuals for preventative therapy and 
for enriching trials to maximize power, 
and it represents another step toward 
integrating imaging into the diagnosis 
and management of AD. The validation 
of our predictive model in a new popu-
lation is required in further research. 
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 Last, the fi nding that brain volume 
differences are predictive of future 
memory decline supports the concept 
of preclinical AD. As described in the 
Materials and Methods, with use of our 
defi nition of memory decline, 17% (25 
of 149) of the participants were desig-
nated as decliners. This proportion is 
consistent with the 11%–49% of cogni-
tively healthy individuals found postmor-
tem to meet the neuropathologic crite-
ria for AD in previous studies ( 42,43 ). 
We hypothesize that the decliners in our 
cohort may have had greater underly-
ing AD-related abnormalities compared 
with the nondecliners, resulting in volu-
metric differences and subsequent mem-
ory decline. Furthermore, the decliners 
had marginally higher baseline memory 
scores, suggesting that volumetric dif-
ferences may be more predictive of and 
precede clinical memory decline. 

 There were several limitations to 
our study. First, the ADNI was intended 
to mimic a clinical trial, so the follow-up 
period of 2 years is relatively short. Ad-
ditional follow-up is required to deter-
mine whether the cognitive statuses of 
the decliners in our study actually prog-
ress to MCI. The participants also had 
fewer comorbidities than are expected 
for the general population ( 11 ). Second, 
at the participating sites, extensive ef-
forts were made to standardize images 
across the different MR imaging units 
used ( 15 ); however, this would be dif-
fi cult to accomplish in clinical practice. 
Last, this was an exploratory analysis 
in which we used a priori knowledge to 
restrict our analyses to 15 brain regions 
and combinations of these regions. We 
could not have searched exhaustively for 
combinations of all possible cortical and 
subcortical regions without overstretch-
ing the prediction model. Recently, in-
vestigators in some studies attempted 
to circumvent these restrictions by ex-
ploring the use of model-free classifi ca-
tion algorithms, such as those involving 
support vector machines ( 44–46 ). More 
studies are warranted to determine the 
potential benefi ts of other statistical ap-
proaches for accurate classifi cation. 

 In conclusion, our study results dem-
onstrate that automated temporal and 
parietal volume measurements from a 
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